Parker Hannifin France SAS | Parker Hannifin Group - Low Pressure Connectors Europe (LPCE) Division - Parc Alcyone – Bat. D - 1 rue André et Yvonne Meynier CS 46911 - 35069 RENNES Cedex, FRANCE
Tel. : +33 2 99 25 55 00 | Fax : | E-mail : transair@parker.com

Compressed air pipe system

History of compressed air pipe systems, compare alternatives, system examples, control operating costs, guidelines, condensation.

Show / Hide

Purpose of a compressed air pipe system

The purpose of the compressed air piping system is to deliver compressed air to the points of use. The compressed air needs to be delivered with enough volume, appropriate quality and pressure to properly power the components that use the compressed air. Compressed air is costly to manufacture. A poorly designed compressed air system can increase energy costs, promote equipment failure, reduce production efficiencies, and increase maintenance requirements.

It is generally considered true that any additional costs spent improving the compressed air piping system will pay for themselves many times over the life of the system. Compressed air is utilized in many commercial industrial facilities and is considered a utility that is essential to production. Transair’s aluminium compressed air pipe system provides airtight fittings with full bore flow creating a more energy efficient system.

Transair compressed air pipe systems are quick to install and ready for immediate pressurization. Components are removable and interchangeable and allow immediate and easy layout modifications reducing production downtime. Unlike the performance of steel pipe, which degrades over time due to corrosion, air quality is clean with optimum flow rate performance with the use of a Transair pipe system.

Thanks to its large choice of sizes in 100mm (4") , 76mm (3"), 63mm (2 1/2") , 40mm (1 1/2"), 25mm (1"), 16.5mm (1/2") and an extensive range of accessories, the Transair system meets the requirements of numerous industrial and garage workshop installations. Furthermore, you can't beat the simple installation, energy savings, and layout flexibility of Transair compressed air piping solutions.

Show / Hide

History of a compressed air pipe system

Show / Hide

Example of a compressed air pipe system

Show / Hide

Controlling operating cost

Pressure Drop Costs: To compensate for pressure drops, the compressor must work harder, which implies more energy consumption and additional costs.

• Cost of pressure drops over a 10-year period:

Technologies offering smooth bore pipe work (aluminium, plastic) provide a high reduction in pressure drop and thus also operating costs. Conversely galvanized steel systems, affected by rust and pitted interior surfaces after several years of use, cause higher operating costs.

Annual costs: In terms of overall performance versus costs, the choice should not only depend on technology and purchasing price. The exact cost of a system also includes annual operating costs (such as installation and commissioning of a system).

• Example of Annual Costs for a 200m system:


Operating: addition of drops, pressure drop, leaks, maintenance
Commissioning: leak detection, painting
Installation: materials, labour

Show / Hide

Guidelines for optimizing an air pipe system

The installation of an air pipe system should be completed in accordance with certain guidelines. These pages include various recommendations to be observed in order to obtain the expected performance, reliability and security of your air pipe system.

• Bends and bypasses involve pressure drops. To avoid them, use assemblies: they allow modification of a system and the bypass of obstacles.

• Limit excessive reductions in pipe diameters, which also involve pressure drops.

•  Threaded components create ever increasing leaks over time, choose materials that do not corrode.

• Ensure consistent quality clean air. 

• The size of a system has direct influence on the good performance of tools: choose the appropriate diameter according to the required flow rate and acceptable pressure drop.

• To facilitate access for maintenance, do not position a system underground.

• Install drops as close as possible to areas of operation, therefore where tools require maximum energy for optimal working. 

• Install pipe supports as follows: two supports per 3m & 6m pipe length. 


Show / Hide

The problem of condensation

The temperature variance between the outside air and the air within the pipe system will create a drop in the temperature of the pipe network air and cause condensation in the system.

Condensate collects within the pipeline and circulates throughout the system:

Condensate matter adversely affects pneumatic applications. Therefore we must ensure that it does not reach the workstation, if we want to prevent breakdowns.

The traditional method is to install an upward loop:

Condensate water thus remains in the main system and the workstation is not affected by poor quality air.

Equipping compressed air pipe systems with brackets that incorporate an upward loop is essential-even when a dryer is used. Dryers remove only a proportion of the water that is present in compressed air since condensation continues to occur due to variations in temperature levels.

Furthermore, such brackets increase the safety and protection of pneumatic tools and equipment should the dryer break down or malfunction. For example, 11 litres of water per hour can be produced by a compressor generating 294 cfm (500 m3/h) at 20°C.

To create this upward loop using traditional materials takes time and many fittings must be used, thus increasing the risk of leakage.
A modern and faster solution is to use a bracket with an integrated upward loop (see below).